“艾伦教授,很高兴见到您。”

    加州👄🆕大学的圣塔芭芭拉分校区中,科技博客的媒体记者热情的和眼前的诺奖🙒🉸老人握了握手,打了个招呼。

    老人笑着握🎡💦了🚒💷🖜握手,点了点头示意道:🜟🃘😁“坐吧,我的助手已经跟我说过了。”

    浅聊了一下后,科技博客的媒体记者开口道:“艾伦教授,关于最近arixv上很火的那篇有关于锂枝晶难题的论文您看过了🄚吗?听说那位徐教授研发出来了解决锂枝晶难题的方法?”

    艾伦·黑格点了点头,道:“已经看过了,是篇相当精彩的论文,目前我🙾🏿☌们正在依据论文上的方法重复实验。”

    记者有些惊讶的问道:“难道它是对的?”

    艾伦👄🆕·黑格教授摇了摇头,道🍇🅽🌂:“暂时还不知道,在实验结果没有出来前,我也没法保证说它一定就能解决锂枝晶难题。”

    “不过.....”

    迟疑了一下🎡💦,老人接着道:“从理论上来说,它极有可🏰🝰🎯能是🊈🎕🐻对的。”

    “而且根据我的了解,目前已🍇🅽🌂经有不少的高校或实验室复刻出了这项成果,从初步的测试来看,这种人工sei薄膜能够在很大程度上抑制锂枝晶的生长。”

    闻言,科技博客的媒体记者迅速问🄳🁧道:“那如果锂枝晶🏰🝰🎯问题被解决了,它会给我们的生活带来什么样的变化?”

    艾伦教授沉吟了一下后缓慢的开口道:“锂枝晶难题是锂电池中最大的一个,它对锂电池的发展意义🇄🕾相当重大。”

    “首先可以肯🚒💷🖜定的是,如果锂枝⛯🝸晶问题🜟🃘😁能得到解决,我们将得到容量更高的锂电池。”

    “毕竟锂离子电池的容量主要取决于正、负极活性材料的质量和🅦🈷🂿配比,而正负极材料😟🂩👝又决定了电池的能量密度。”

    “而无论是我们现在使用的锂离子电池,还是全世界都在研发的锂硫电池,甚至是还在理论阶段锂空气电池,都绕🆄🌾🄯不开锂枝晶生成的问题。”

    “举个很简单的例子,当前市面上流通的锂电池,电池的负🊈🎕🐻极材料主要有天然石墨材料、人造石墨材料、硅基等等。”

    “而石墨的理论比容量只有🜩372mah/g,但如果将石墨更换成锂金属,其容量可以达到😍3860mah/g,整整🎣💸提升了十倍多。”

    老人简洁话语🚒💷🖜和🟦🟜🞂对比,让正在采访的媒体记者倒吸了口凉气,脸上露出了震惊的表情。

    如果说用其他的方式来描述,或许还达不到🀵这个效果。

    但是三位💔👠🊏数和四位数一对比,恐怕任谁都清楚。

    震惊过后,科技博客的媒体记者的眼中带着兴奋的光芒,迅速问道:“也就是说,如果锂枝晶😍难题得到解决,我们将得到拥有十🄚倍续航能力的电池?”